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Introduction
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EFT for bound states at finite temperature

QCD

NRQCD

pNRQCD

pNRQCD

NRQCDHTL

HTL

m

1/r ∼ mv

V ∼ mv2

T
mD

Miguel A. Escobedo (Physik-Department T30f. Technische Universität München)Non-relativistic bound states in a moving thermal bath 15th of June, 2011 4 / 65



Imaginary part of the potential

For T � 1
r ∼ gT

V (r) = −4αse
−mD r

3r
− i

4αsCFTφ(mDr)

3
,

This imaginary part of the potential was found by Laine, Philipsen,
Romatschke and Tassler.

It was confirmed by EFT techniques [Escobedo and Soto—Brambilla,
Ghiglieri, Petreczky and Vairo].

It was found that in the g → 0 limit this provides the dominant
dissociation mechanism.

This temperature is smaller than the one obtained just with screening.
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Ideal conditions

The EFTs for HQ at finite temperature and the imaginary part of the
potential were obtained assuming thermal equilibrium and that the
bound state is at rest.

This is not what happens in heavy-ion collisions.

Miguel A. Escobedo (Physik-Department T30f. Technische Universität München)Non-relativistic bound states in a moving thermal bath 15th of June, 2011 6 / 65



Relax this conditions

Anisotropic plasma

Quarkonium is moving

...
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Relax this conditions

Anisotropic plasma
Burnier, Laine and Vepsälänen. Dumitru, Guo and Strickland.
Philipsen and Tassler.

Quarkonium is moving

...
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Is quarkonium moving?

Experimentally, if quarkonium is comoving with the thermal bath then the
v2 parameter should be the same as other types of particles.
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Is quarkonium moving?

Regeneration

Initially produced
I Slow down due to the plasma.
I Dissociated while still moving with a certain velocity.

It is needed to know how dissociation behaves when there is a velocity
between the bound state and the thermal bath.
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General framework

We choose the frame where the bound state is at rest and the thermal
bath is moving.

f (βµkµ) =
1

e |β
µkµ| ± 1

,

βµ =
γ

T
(1, v) =

uµ

T
,

We use a generalization of the real-time formalism called Non-equilibrium
field theory (Zhou, Su, Han and Liu). At tree level substitute the
equilibrium distribution functions by the non-equilibrium ones in the
propagator.
Some of the identities found in equilibrium are not longer valid. For
example,

∆S = [1 + 2nB(|k0|)]sgn(k0)[∆R −∆A]
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Massless particles

We can define an effective temperature depending on the incidence angle.

Teff(θ, v) =
T
√

1− v2

1− v cos θ
.

Miguel A. Escobedo (Physik-Department T30f. Technische Universität München)Non-relativistic bound states in a moving thermal bath 15th of June, 2011 12 / 65



Heavy quarkonium potential in a moving thermal bath
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Heavy quarkonium potential in a thermal bath at rest

For T � 1
r ∼ gT
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Heavy quarkonium potential in a thermal bath at rest

For T � 1
r ∼ gT

V (r) = −4αse
−mD r

3r
− i

4αsCFTφ(mDr)

3
,

In the real-time formalism this is the Fourier transform of the time-ordered
(11) propagator of longitudinal static gluons (in the Coulomb gauge). It
has a real and an imaginary part.

∆11 =
1

2
(∆R + ∆A + ∆S)

In equilibrium there exist a simple relation between ∆R and ∆S due to
fluctuation-dissipation theorem. In our case this relation does not hold.
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Computation of Πµν
S (k)

We know

That HTL are gauge invariant.

That kµΠµν
S = 0.

The tensor structure of ΠS(k)µν can only depend on the external
momentum kµ and the velocity of the thermal bath vµ.
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Computation of Πµν
S (k)

Πµν
S = Π1

(
gµν − kµkν

k2

)
+ Π2

(
vµ − (v · k)kµ

k2

)(
vν − (v · k)kν

k2

)

Π1 and Π2 are scalars that can be computed in the thermal bath rest
frame.

Knowing this scalars it is straightforward to compute ΠS in any frame.

For ΠR the procedure is the same.
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ΠS and ΠR

ΠS(k, u) =
i2πm2

DT (1− v2)3/2(1 + v2

2 cos2 θ)

|k|(1− v2 sin2 θ)5/2

ΠR(k , u) = a(z) +
b(z)

1− v2

where z = v cos θ√
1−v2 sin2 θ

a(z) =
m2

D

2

(
z2 − (z2 − 1)

z

2
ln

(
z + 1 + iε

z − 1 + iε

))

b(z) = (z2 − 1)

(
a(z)−m2

D(1− z2)

(
1− z

2
ln

(
z + 1 + iε

z − 1 + iε

)))
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∆R and ∆S

In the Coulomb gauge, the propagator of the longitudinal gluon field A0

∆R =
1

k2 + ΠR(k)

∆A = (∆R)∗

∆S =
ΠS

2iImΠR
(∆R −∆A)

It can be shown that the following relation is only fulfilled for v = 0.

∆S = (1 + 2nB(|k0|))sgn(k0)(∆R −∆A)
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The real part of the potential
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The real part of the potential

V (r) =
1

2
(VR(r) + VA(r))

This was computed before by Chu and Matsui.

It can serve us to check the accuracy of our numerical computations.

Nowadays the velocity reached experimentally is expected to be much
higher.

It is interesting to compare to AdS/CFT correspondence results.
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AdS/CFT correspondence results

It was found by H. Liu, K. Rajagopal and U.A. Wiedemann that the
potential in Super Yang-Mills was Yukawa like with

mD(v , θ) = mD(0, 0)
h(v , θ)

(1− v2)1/4
,

with h(v , θ) ∼ 1.
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AdS/CFT correspondence results

It was found by H. Liu, K. Rajagopal and U.A. Wiedemann that the
potential in Super Yang-Mills was Yukawa like with

mD(v , θ) = mD(0, 0)
h(v , θ)

(1− v2)1/4
,

with h(v , θ) ∼ 1.

Screening enhances with the velocity.

The potential is still very isotropic.
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The real part of the potential, normalization

At v = 0

Re V (r) = −4αse
−mD r

3r
= −4αsCFmDg(mDr)

3

at any velocity we can define

g(mDr) = −3ReV (r)

4αsmD

g(x) does not depend on T , it is useful to compare the same T with
different v . This is what we are going to plot.
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The real part of the potential at v = 0
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The real part of the potential at v = 0.5
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The real part of the potential at v = 0.9
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The real part of the potential at v = 0.99
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Analysis of the plots

The closer the lines the stronger the screening.

A Yukawa potential does not provide a good fit, specially in the
direction parallel to the velocity of the thermal bath.

Screening and anisotropy grow with the velocity.

The weak coupling behavior is very different to the proposed by
AdS/CFT.
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The wake
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The wake

A wake is a density fluctuation produced by the fact that an object is
moving at a high speed in a medium.

The fact that bound states moving in a medium produce a wake is
known in condensed matter physics (P. M. Echenique, F. Flores and
R. H. Ritchie).

It has also been predicted in the quark-gluon plasma. Both in weak
coupling approximation and AdS/CFT correspondence (N. Armesto.
M. G. Mustafa, M. H. Thoma, P. Chakraborty. J. Ruppert and B.
Muller, B. F. Jiang and J. R. Li, P. M. Chesler and L. G. Yaffe).

Our approach is slightly different because we work in the frame where
the bound state is at rest.
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Wake in the parallel direction
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No wake in the perpendicular direction
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The imaginary part of the potential
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The imaginary part of the potential at v = 0

Im V (r) = VS(r) = −4αsTφ(mDr)

3
,

with

φ(x) = 2

∫ ∞
0

dzz

(z2 + 1)2

(
1− sin(zx)

zx

)
.

At any velocity we can define

φ(mDr) = −3Im V (r)

4αsT
.

This is what we are going to plot.
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The imaginary part of the potential at v = 0
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The imaginary part of the potential at v = 0.5
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The imaginary part of the potential at v = 0.9
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The imaginary part of the potential at v = 0.99
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The imaginary part in the parallel direction
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The imaginary part in the perpendicular direction
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Analysis of the results

The imaginary part grows with the velocity up to v ∼ 0.9 but after it
starts decreasing.

There is a large anisotropy.

For most velocities it would still be the dominant dissociation
mechanism. But for relativistic velocities?.
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Intuitive explanation for anisotropy

The heavy quark and the heavy anti-quark interchange gluons with
k0 � k ∼ 1

r .

The travel of this gluon from the heavy quark to the heavy anti-quark
can be interrupted by the collision with particles in the thermal bath.
This particles are on-shell and have typical energy πT .

By momentum conservation this can only happen for particles of the
thermal bath that come from the perpendicular direction.
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Intuitive explanation for anisotropy

In the parallel direction

Most of the scattering come from red-shifted particles.
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Intuitive explanation for anisotropy

In the perpendicular direction

There is also an important contribution from blue-shifted particles.
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The relativistic case.
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The energy scales

There are

The typical momentum p.

The Debye mass scale mD .

A scale related with the imaginary part of the potential md .

Then

If p � mD ,md the bound state survives.

If p ∼ md � mD it dissociates due to the imaginary part.

If p ∼ mD � md it dissociates due to screening.
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The energy scales

mD md

v = 0 gT g2/3T

v → 1 and θ � π
2 gT g2/3T

√
1− v2

v → 1 and θ ∼ π
2

gT√
1−v2

g2/3T
(1−v2)1/3

For very high velocities screening substitutes the imaginary part as the
dissociation mechanism in the weak coupling.
For generic angles, the critical velocity where this change of behavior is
observed is

vc ∼
√

1− ag2/3
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Non-relativistic EFT in a moving thermal bath.
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Non-relativistic EFT in a thermal bath

QCD

NRQCD

pNRQCD

pNRQCD

NRQCDHTL

HTL

m

1/r ∼ mv

V ∼ mv2

T
mD
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The distribution function

We choose the frame where the bound state is at rest and the thermal
bath is moving.

f (βµkµ) =
1

e |β
µkµ| ± 1

,

βµ =
γ

T
(1, v) =

uµ

T
,
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Massless particles

We can define an effective temperature depending on the incidence angle.

Teff(θ, v) =
T
√

1− v2

1− v cos θ
.

If v ∼ 1 the order of magnitude of Teff can depend of θ.
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Light-cone coordinates

k+ = k0 + k3 and k− = k0 − k3 .

βµkµ =
1

2

(
k+
T+

+
k−
T−

)
,

T+ = T

√
1 + v

1− v
and T− = T

√
1− v

1 + v
.

Remarks

These equations are true for any dispersion relation.

For a massive particle with mass M, the minimum of βµkµ is M
T . If

M � T this particle is not found in the thermal bath.

If v ∼ 1 then T+ � T−. This is an interesting case for an EFT
analysis. It is also useful because it will allow to resum large
logarithms.
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Degrees of freedom

βµkµ =
1

2

(
k+
T+

+
k−
T−

)
,

If k+ � T+ or k− � T− thermal effects are exponentially suppressed.

A collinear region, corresponding to k+ ∼ T+ and k− . T−, the bulk
of particles in the thermal bath.

An ultrasoft region, corresponding to k+ � T+ and k− . T−,
particles of the thermal bath whose energy is similar to that of the
bound state.

Taking into account this collinear region terms similar to the ones found in
Soft Collinear Effective Theory appear.
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Hydrogen atom for me ∼ T+ � mα� T− � mα2

T =
√

T+T− then me � T . There are only photons in the thermal
bath.

The matching between QED and NRQED has to be done taking into
account the existence of collinear photons.

The collinear photons have to be integrated out in the matching
between NRQED and pNRQED because their virtuality is of order T 2.

Ultrasoft photons effects can be computed in pNRQED.
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Collinear photons in the matching between QED and
NRQED

1
2
1+γ0
2

(
+

)
1+γ0
2 =

√
Z 1+γ0

2

√
Z

Because in NRQED the following diagram is not possible

by momentum conservation in each vertex a non-relativistic electron can
not receive a collinear photon and keep being non-relativistic.
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The collinear sector of the NRQED Lagrangian
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The collinear sector of the NRQED Lagrangian. Coulomb
gauge

Collinear A0 propagator is not affected by the temperature.

∇A = 0. For collinear photons this also implies A3 � |A⊥|.
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The collinear sector of the NRQED Lagrangian. Coulomb
gauge.
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Effect of collinear photons in pNRQED

= − iπαT 2

3me

(
1− p2

2m2
e

)

mpNRQED
e = me +

παT 2

3me
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Ultrasoft photons

But now there is a space anisotropy

This means that the results are different depending on the third
component of the angular momentum.
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Ultrasoft photons.

S-wave

δEus
n00 = δEus

n00|v=0 −
4Zα2

3

(
1 +

1

2
log

(
1− v

1 + v

)) |φn(0)|2
m2

e

δΓus
n00 =

4Z 2α3T

3n2

√
1− v

1 + v
log

(
1 + v

1− v

)
.

Non s-wave

δEus
nlm = δEus

nlm|v=0 −
Z 3α2〈2l00|l0〉〈2l0m|lm〉
6πm2

ea30l(l + 1
2)(l + 1)

,

δΓus
nlm = 4Z2α3T

3n2

√
1−v
1+v

(
log
(
1+v
1−v

)
−
(

log
(
1+v
1−v

)
− 3
)
〈2l00|l0〉〈2l0m|lm〉

)
.
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Discussion

I have chosen to present only a very specific set of temperatures and
velocities.

We have computed the case of hydrogen atom for me � T at an
arbitrary velocity.

For this we achieve the same accuracy as at v = 0.

This work paves the way for future developments in HQ, where
complications due to vacuum polarization have to be taken into
account.
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Conclusions.
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Conclusions

The EFT analysis of bound-states can be generalized to a moving
thermal bath at it allows to reveal the physics in an easier and more
systematic way.

The screening becomes more important as the temperature increases,
being more important than the imaginary part for v � vc .

The imaginary part will be the dominant dissociation mechanism for
moderate velocities.

In the case of hydrogen atom a accuracy of the order of the Lamb
shift can be reached with this methods.
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